
An Agile Software Engineering Course with Product Hand-Off
Jason B. Shepherd
Buena Vista University
Storm Lake, Iowa, U.S.A.

shepherd@bvu.edu

ABSTRACT
This paper describes a novel design for an agile software engi-
neering course that emphasizes keeping product artifacts updated
throughout development. The signature transformative event in
the course is the mid-semester project “hand-off,” at which point
teams trade projects with other student teams and must make im-
mediate progress despite no prior knowledge of the new project’s
design, coding conventions, or documentation. Course features are
described along with their implementation and assessment.

KEYWORDS
Software engineering education, agile software engineering, peer
learning, hand-off
ACM Reference Format:
Jason B. Shepherd. 2018. An Agile Software Engineering Course with Prod-
uct Hand-Off. In SEEM’18: SEEM’18:IEEE/ACM International Workshop on
Software Engineering Education for Millennials , May 27-June 3 2018, Gothen-
burg, Sweden. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3194779.3194792

1 MOTIVATION
In industry, one of the most notable trends towards managing
change in a project is the shift towards agile software develop-
ment [6]. In response to this trend, educators have sought to utilize
agile methods in software engineering courses, often using ag-
ile frameworks such as eXtreme Programming (XP) [2] or Scrum
[10] to guide development. Activities intrinsic to agile frameworks
(such as pair programming, test-driven development, informative
workspaces, etc.) encourage both active learning and peer learn-
ing. This type of learning is ideal for engaging today’s millennial
students.

One goal for software engineering courses is to prepare stu-
dents who will ultimately enter real-world software development
environments. By extension, a software engineering course that
utilizes agile methods should help students value readable code and
informative documentation in a software project. However, using
agile methods does not automatically create this appreciation in
students. In fact, the opposite is equally likely. Students tend to be
motivated by grades. If students view completing weekly tasks for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SEEM’18, May 27-June 3 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5750-0/18/05. . . $15.00
https://doi.org/10.1145/3194779.3194792

a grade as the sole goal, there is no obvious incentive for them to
properly maintain their project. After all, they already feel they
“know” their code. Students are skeptical of the importance of the
design model, clean interfaces, and readable or well-commented
code in preparation for the inevitability of change. Given that stu-
dents often seek immediate short-term results without considering
long-term consequences, it is necessary to encourage students to
focus on project refactoring beyond the simple application of agile
methods.

This paper describes the design of an undergraduate software
engineering course that uses agile methods, modern toolsets, and
a series of graded activities to incentivize the proper updating
of project artifacts. The most unique of the graded activities is
the project hand-off. The hand-off is a one-week period where
student teams switch projects. During this week, a new team gains
temporary ownership of another team’s project. This new team
must continue the development tasks previously planned by the
original project team during the original team’s weekly planning
meeting. The success of the new team is dependent to a large degree
on how well the project has been maintained to that point. At the
end of the week, the student teams provide feedback to each other.

The rest of this paper is organized as follows. Section 2 describes
prior work in creating agile software engineering courses. Section 3
presents specifics of how the hand-off is conducted and how the
exercise is assessed, along with other activities that incentivize
product upkeep. Section 4 shares observations made from three
distinct offerings of this course. Section 5 offers conclusions and
lessons learned.

2 RELATEDWORK
The infusion of agile software development methods in undergrad-
uate software engineering courses is not a new endeavor in any
sense. Descriptions of courses and their prominent features have
been presented in [4]. Some of these courses ascribe closely to either
XP or Scrum, or they use a prescribed process that is a combination
of both (similar to the course design described in this paper).

The iterative nature of agile methods is one that is espoused by
the ACM/IEEE computer science curricular guidelines [7]. Iterative
development gives students a chance to practice and apply lessons
learned from one development cycle to the next. Rapid feedback
is paramount, but it can be difficult for instructors to keep up.
Goldman et al. [6] suggest the use of graduate students to serve as
process coaches to alleviate this problem. A majority of students’
time should be spent developing and practicing agile methods, yet
there must be a way to formally disseminate knowledge about agile
methods and other software engineering concepts. Santos et al. [9]
suggest the use of mini-lectures to share relevant information prior
to when students need it.

https://doi.org/10.1145/3194779.3194792
https://doi.org/10.1145/3194779.3194792
https://doi.org/10.1145/3194779.3194792

SEEM’18, May 27-June 3 2018, Gothenburg, Sweden Jason B. Shepherd

Project selection is important when teaching agile methods.
Stapel et al. [12] suggest that instructors should have students
develop new software as opposed to enhancing already written
programs. This allows them to focus on practicing agile processes
rather than spending time acquainting themselves with an existing
project’s idiosyncrasies.

Course materials have been developed to support such agile soft-
ware engineering classes. A frequently adopted textbook for agile
software engineering classes is Engineering Software as a Service
(ESaaS) by Armando Fox and David Patterson [5]. ESaaS is paired
with an extensive set of online resources and recommended frame-
works and tools that instructors can use to deliver their courses.
The resources make ESaaS very attractive since much of the prep in
an agile software engineering course is spent selecting frameworks
and tools, and then preparing tutorials for students on how to use
these frameworks and tools.

3 COURSE DESIGN
3.1 Overview
The course described in this paper is intended for second and third
year undergraduate computer science students who have had a
prerequisite course in data structures. This course has been offered
in three distinct semesters with a course limit of 24 students per
semester.

Students are partitioned into teams of at least four students dur-
ing the first week of the class. Projects are semester-long and chosen
by the instructor. Customers are on-campus, and the instructor acts
as the process coach. Teams are always arranged to make an even
number of teams. This allows each single project to be given to
two teams. Teams that have the same project will participate in
the product hand-off with one another shortly after mid-term. The
hand-off is described in Section 3.3.

Development cycles in this course are called sprints. Sprints
do not begin until the third week in the semester. The first two
weeks are spent learning about general software process models,
our specific development process, how to use GitHub [8], and how
to complete tasks within our development process using GitHub
and Slack [3]. The development process we use is a blend of agile
methods that borrow concepts such as pair programming, test-
driven development, and informative workspaces from eXtreme
Programming (XP) as well as a feature/issue backlog concept from
Scrum. Sprints are short, one-week endeavors that draw their tasks
from the backlog.

The sprints, product hand-off, and individual self-evaluations
are the major evaluative activities in the course. Figure 1 shows
when these activities occur. Each activity is described in detail in
the subsections that follow.

3.2 Sprints
Sprints often begin with a mini-lecture (approximately 10 minutes),
either to introduce various software engineering topics or to provide
well-timed hints as students begin to struggle with an aspect of
their projects. Then, students depart the lecture classroom and head
to their designated “offices” – rooms within the building reserved
for each team that serve as XP’s notion of informative workspaces.
Teams select one team member to serve as the project manager

Figure 1: Course schedule

Figure 2: Sprint activities

(PM) for the sprint. The team conducts a planning meeting, during
which the team identifies features/issues to be worked on in the
current sprint. Since teams’ projects are hosted on GitHub, the PM
enters the issues, assigns pairs of developers to each issue, and then
groups the issues together using a GitHub milestone for the sprint.

Pairs commit code within their own GitHub branch and then uti-
lize GitHub’s Pull Request mechanism to bring their branch changes
back into the master branch after a code review is conducted by
other team members, who serve as reviewers (see Figure 2). Com-
mits and pull requests must be done properly to ensure that all
work is traceable back to a now-closed GitHub issue. At the end of
each sprint, the instructor evaluates the team’s progress in terms
of how well issues were handled from a procedural standpoint,
and how thoroughly the team conducted code reviews within the
context of a pull request. Each of these activities contribute to the
overall maintainability of the software project, though in a way
that is mandated by the course and the instructor. The evaluation
form for each sprint milestone can be found at [11] and is free to
reuse under the MIT License [1].

Whenever teams are not in class, they communicate at least
initially using Slack. Each team has their own private Slack channel
that they can use to notify one another of their progress, raise
questions about design issues, negotiate a time to meet in person,
or converse with the instructor.

An Agile Software Engineering Course with Product Hand-Off SEEM’18, May 27-June 3 2018, Gothenburg, Sweden

3.3 Product Hand-off
By mid-term, teams have completed five sprints. In Sprint 6, teams
have their regular planning meeting to choose the issues for the
sprint, but they do not assign developers to those issues. At this
point, each team will switch projects with the other team who has
been assigned the same project. Each new team will try to complete
the issues the “old” team left for them in one week’s time. This
is known as the hand-off. Teams may not communicate with one
another; the new teammay not interact with or ask questions of the
old team. Thus, the new team’s chances of success depend solely
on the quality of the old team’s project artifacts. Hand-off between
teams with the same project allows this phase to run more smoothly
since teams already understand what the product does at a high
level.

At the conclusion of Sprint 6, the new team fills out the hand-off
evaluation form. The form guides the new team in addressing the
project’s status categorically. The categories are:

(1) Install, Build, and Run – Does the project include a README
file that explains how to setup a development environment
and how to build and run the project. This includes a de-
scription of how to run unit tests.

(2) Issue Management – Can we tell what happened in the pre-
vious sprint? Is it clear what is scheduled to happen in the
current sprint?

(3) Code – Is the codebase well organized? Does it follow stated
coding conventions and use informative comments? Is the
codebase devoid of obsolete files and does it include unit
tests with good test coverage?

(4) Documentation – Is the Wiki up to date and informative?
Does it include information that could be used to create
issues/feature requests for future sprints? Is there design
documentation and is it current?

The purpose of the students’ comments is purely formative. It is
not used to produce a summative overall score. Further, the hand-off
evaluation form is not completed until the end of the sprint in order
to give the new team time to reflect on the state of the project and
on their own work. It also gives them time to “cool down” from any
early sprint frustrations that are inherent to adopting a new project.
The old team is then able to see the comments at the beginning of
Sprint 7.

The hand-off evaluation comments are not used to score the old
team’s efforts in the hopes of eliciting more honest commentary.
Past experience indicates that students are reluctant to grade one
another for fear of retribution if the roles are reversed.

Once the evaluations are completed, the instructor grades the
thoroughness and quality of the new team’s evaluation. The in-
structor’s evaluation introduces accountability to the new team as
reviewers of the old team’s project. The new team knows they must
do well in reflection and in providing feedback in order to get a
good grade, which incentivizes good feedback. The end result is
effective peer learning.

Figure 3 shows the process of evaluation during the hand-off
and the actors involved. When Sprint 7 starts, teams return to their
original projects for the remainder of the semester. The hand-off
evaluation form and a rubric for instructor evaluation of the form
can be found at [11]. It is important to note the different angles

Figure 3: Order of evaluation during hand-off

through which sprints and hand-offs are used to motivate students
and assess their learning. The sprints assess student work from the
instructor’s point-of-view. The hand-off assesses product quality
from other students’ points-of-view, although the assessment is
purely formative.

3.4 Self-Evaluations
The assessed activities explained in Subsections 3.2 and 3.3 are
team-level assessments. Individual performance must also be mea-
sured. The self-evaluation is intended to mimic the self-evaluations
often done in industry as part of compensation and performance
review. The self-evaluation considers students’ reflections of their
work along with supporting evidence (commits, pull requests, code
reviews, unit tests contributed, contributions to design documen-
tation, etc.). The instructor uses the self-evaluation and corrobo-
rating evidence to grade the self-evaluation using a rubric. The
self-evaluation and accompanying rubric can be found at [11].

4 OBSERVATIONS
The motivation for this course design was to impress upon students
the importance of good documentation and well-maintained code
in preparation for the inevitability of change in a software product.
We saw evidence that students bought into these ideas, both during
the hand-off and again at the end of the semester when asked to
reflect on the hand-off in the context of the whole semester.

One thing we looked for was thoughtfulness and variety of com-
ments on the hand-off evaluation forms. Comments submitted on
the hand-off evaluations were numerous and ranged from critical
(e.g., missing functions/code) to cosmetic (e.g., typos in documen-
tation). Table 1 shows the types of comments made by new teams
to the old teams, with the comments grouped by the project area
addressed by the comment.

The variety of comments proved helpful to students on future
sprints. Nearly all comments made by the new team were addressed
by the end of Sprint 8, and all those addressed were tied to a specific
issue the team created in GitHub. In fact, teams improved overall

SEEM’18, May 27-June 3 2018, Gothenburg, Sweden Jason B. Shepherd

Comment Type Mentions
Code - poorly organized 4
Code - obsolete 4
Code - missing 2
Code - poor error messages 2
Code - poor comments 5
Docs - bad project setup instructions 6
Docs - bad build instructions 2
Docs - typos 3
Docs - missing/incomplete design 3
Docs - missing content/out-of-date 4
Tests - missing 6
Tests - not working 4
Issues - not grouped into milestones 7
Issues - lacking detail 8

Table 1: Types of comments from hand-off evaluations

on how they managed issues within GitHub in Sprints 7 - 9. Prior
to the hand-off, GitHub issues contained minimal information and
little evidence of team collaboration. After the hand-off, issues
incorporated not only detailed information needed to fix the issue,
but also detailed commentary by those assigned as the need for
design refactoring arose.

Student reactions to the hand-off and the course in general came
from course evaluations. Course evaluations were conducted anony-
mously through the Web during the last two weeks of the semester.
The evaluation itself consisted of both closed-end questions and
open-ended responses. One open-ended question asked students
to reflect on the hand-off. Two students expressed a distaste for
allowing another team to modify their code and temporarily los-
ing control of their project, which also suggests a strong sense
of product ownership. Over 75% of those answering the question
stated the hand-off was a worthwhile activity. Approximately 50%
of those answering the question articulated an increase in their
own self-efficacy with respect to future workplace preparedness
because of the hand-off.

5 CONCLUSION AND LESSONS LEARNED
Each semester this course was taught, both project selection and
the hand-off were treated differently in an attempt to see what
worked best. It became clear that there are three factors to consider
when implementing product hand-off in a course.

5.1 Hand-Off the Same Project
In the first semester product hand-off was attempted, teams did not
have the same project. The rationale for this practice was that in
professional practice, developers may need to ramp up quickly in
projects with little a priori knowledge. To compensate for learning
a new project, the hand-off sprint was extended from one week to
two. Despite this compensation, the hand-off failed. In hindsight, it
is reasonable to expect a seasoned industry professional to ramp
up quickly on a project, but it is not reasonable to expect the same
from a second year computer science student.

If it were desirable to perform the product hand-off with different
projects, it may still be possible if the projects to be handed off were
related in some way. For example, one project might be an app
that uses a sophisticated API, and the other project might be an
implementation of that API. Pairing projects in this manner might
help ease the transition from one project to another during the
hand-off; however, projects of this nature would be very difficult to
invent every semester.

5.2 Hand-Off Earlier
Students have suggested that we conduct the hand-off earlier than
Sprint 6. They indicate two incentives for doing so. First, students
may receive the benefits of the hand-off sooner. An earlier appreci-
ation for a well-kept software product would give students more
time to use their development sophistication. Second, having the
hand-off in Sprint 6 does not give teams much remaining time to
polish their finished product. Students noted this was particularly
frustrating, especially when the new team made changes that the
old team found undesirable and in need of refactoring.

5.3 Choose Familiar Languages and
Frameworks

For reasons similar to why we tried handing off different projects,
we also experimented with handing off the same project but where
the projects werewritten using different languages/frameworks.We
found second and third year students are not yet adept at learning
new languages/frameworks, and this only distracts from the main
focus of practicing agile methods.

REFERENCES
[1] 1988. MIT License. https://opensource.org/licenses/MIT. (1988). Last retrieved

2018-02-09.
[2] Kent Beck and Cynthia Andres. 2004. Extreme Programming Explained: Embrace

Change (2nd Edition). Addison-Wesley Professional.
[3] Stewart Butterfield, Eric Costello, Cal Henderson, and Serguei Mourachov. 2013–

2018. Slack. https://slack.com/. (2013–2018).
[4] Jennifer Campbell, Stan Kurkovsky, Chun Wai Liew, and Anya Tafliovich. 2016.

Scrum and Agile Methods in Software Engineering Courses. In Proceedings of
the 47th ACM Technical Symposium on Computing Science Education (SIGCSE ’16).
ACM, New York, NY, USA, 319–320. https://doi.org/10.1145/2839509.2844664

[5] A. Fox and D.A. Patterson. 2013. Engineering Software as a Service: An Agile
Approach Using Cloud Computing. Strawberry Canyon LLC. https://books.
google.com/books?id=3kqjmwEACAAJ

[6] Alfred Goldman, Fabio Kon, Paulo J. S. Silva, and Joseph W. Yoder. 2004. Being
Extreme in the Classroom: experiences Teaching XP. Journal of the Brazilian
Computer Society 10 (11 2004), 5 – 21. http://www.scielo.br/scielo.php?script=
sci_arttext&pid=S0104-65002004000300002&nrm=iso

[7] Association for Computing Machinery (ACM) Joint Task Force on Comput-
ing Curricula and IEEE Computer Society. 2013. Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree Programs in Computer Science.
ACM, New York, NY, USA. 999133.

[8] Tom Preston-Werner, Chris Wanstrath, and PJ Hyett. 2008–2018. GitHub. https:
//github.com/. (2008–2018).

[9] Viviane A Santos, Alfredo Goldman, and Carlos D Santos. 2012. Uncovering
Steady Advances for an Extreme Programming Course. CLEI Electronic Journal
15 (04 2012), 2 – 2. http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=
S0717-50002012000100002&nrm=iso

[10] Ken Schwaber. 2004. Agile Project Management With Scrum. Microsoft Press,
Redmond, WA, USA.

[11] Jason B. Shepherd. 2018. SE: Agile Software Engineering course materials. http:
//github.com/jbshep/SE/. (2018).

[12] Kai Stapel, Daniel Lübke, and Eric Knauss. 2008. Best Practices in Extreme
Programming Course Design. In Proceedings of the 30th International Conference
on Software Engineering (ICSE ’08). ACM, New York, NY, USA, 769–776. https:
//doi.org/10.1145/1368088.1368197

https://opensource.org/licenses/MIT
https://slack.com/
https://doi.org/10.1145/2839509.2844664
https://books.google.com/books?id=3kqjmwEACAAJ
https://books.google.com/books?id=3kqjmwEACAAJ
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002004000300002&nrm=iso
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002004000300002&nrm=iso
https://github.com/
https://github.com/
http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S0717-50002012000100002&nrm=iso
http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S0717-50002012000100002&nrm=iso
http://github.com/jbshep/SE/
http://github.com/jbshep/SE/
https://doi.org/10.1145/1368088.1368197
https://doi.org/10.1145/1368088.1368197

	Abstract
	1 Motivation
	2 Related Work
	3 Course Design
	3.1 Overview
	3.2 Sprints
	3.3 Product Hand-off
	3.4 Self-Evaluations

	4 Observations
	5 Conclusion and Lessons Learned
	5.1 Hand-Off the Same Project
	5.2 Hand-Off Earlier
	5.3 Choose Familiar Languages and Frameworks

	References

